专利摘要:
A driving device for a stud pin and a method of manufacturing a studded tire that can accurately and efficiently drive a stud pin into mounting holes in the tread surface. A cylindrical main body (2) vertically extends with a front opening (2a) thereof disposed at the upper end. A stud pin (10) is loaded in a cylindrical inlet portion (3) extending diagonally upward from a side surface of the cylindrical main body (2) with a pin top portion (10a) of the stub pin (10) pointing downward and stored in the cylindrical main body (2). Inside the cylindrical main body (2), the pin top portion (10a) is held by a holding portion (5) formed at the tip of a driving rod (4) in a fitted state and a pin root portion (10b) of the stud pin (10) projects upward from the holding portion (5). The front opening (2a) opposes an installation hole (13) formed in a tread Surface (12). By pushing the stud pin (10) with the driving rod (4) moving in a cylinder axial direction and launching the stud pin (10) from the front opening (2a) with the pin root portion (10b) pointing forward, the stud pin (10) is buried in the installation hole (13) from the pin root portion (10b).
公开号:FI20195313A1
申请号:FI20195313
申请日:2017-10-10
公开日:2019-04-17
发明作者:Yukihisa Takahashi
申请人:Yokohama Rubber Co Ltd;
IPC主号:
专利说明:

DRIVING DEVICE FOR STUD PIN AND METHOD OF MANUFACTURING STUDDED TIRE
Technical Field [0001]
The present invention relates to a driving device for a stud pin and a method of manufacturing a studded tire and particularly relates to a driving device for a stud pin and a method of manufacturing a studded tire that can accurately and efficiently drive a stud pin into an installation hole formed in a tread surface of a tire.
Background Art [0002]
Studded tires that are pneumatic tires with tread surfaces into which stud pins are driven are used in some areas (refer to Patent Document 1). In manufacturing a studded tire, stud pins are driven into many installation holes formed at predetermined positions on the tread surface of the tire. For example, a pistol (driving device) that drives pins is moved downward, is positioned near the tread surface of the tire, and then drives pins into installation holes (refer to Patent Document 2). Alternatively, the stud pins are driven into the installation holes by a manually held gun-type driving device.
[0003]
With a known driving device, the rod that drives a stud pin may be misaligned with the stud pin. When such misalignment occurs, an operation for correcting the misalignment must be carried out through adjustment of the position of the stud pin. When a stud pin is driven into an installation hole in such a misaligned state, defects may occur such as the stud pin being driven diagonally into the installation hole. When such a defect occurs, the driven stud pin has to be pulled out and driven in again.
Citation List
Patent Literature [0004]
Patent Document 1: JP 2016-130059 A
Patent Document 2: JP S58-102302 Y
20195313 prh 17-04-2019
Summary of Invention
Technical Problem [0005]
An object of the present invention is to provide a driving device for a stud pin and a method of manufacturing a studded tire that can accurately and efficiently drive a stud pin into an installation hole formed in a tread surface of a tire.
Solution to Problem [0006]
To achieve the object described above, a driving device for a stud pin includes a cylindrical main body in which a stud pin is stored; and a driving rod extending in a cylinder axial direction inside the cylindrical main body and moving in the cylinder axial direction, wherein the stud pin stored in the cylindrical main body is driven by being pushed by the driving rod from a front opening of the cylindrical main body with a pin root portion of the stud pin pointing forward, the cylindrical main body vertically extends with the front opening located at an upper end, the cylindrical main body including a cylindrical inlet portion extending diagonally upward from a side surface of the cylindrical main body, and a holding portion formed at the tip of the driving rod, and by loading the stud pin in the inlet portion with a pin top portion pointing downward, the stud pin is stored in the cylindrical main body, the pin top portion is held by the holding portion in a fitted state, and the pin root portion projects upward from the holding portion.
[0007]
A method of manufacturing a studded tire using the driving device for a stud pin includes positioning the front opening in a state facing an installation hole formed in a tread surface of a tire; driving the stud pin stored in the cylindrical main body toward the installation hole, and burying the stud pin from the pin root portion.
Advantageous Effects of Invention [0008]
In the driving device for a stud pin according to the present invention, the cylindrical main body vertically extends with the front opening disposed at the upper end. Thus, when the stud pin is loaded to the inlet portion with the pin top portion pointing downward, the weight of the stud pin causes the stud pin to be automatically stored in the cylindrical main body. In the cylindrical
20195313 prh 17-04-2019 main body in which the driving rod including a holding portion at the tip thereof extends, the pin top portion is held by the holding portion in a fitted state and the pin root portion projects upward from the holding portion. This can prevent misalignment of the stud pin and the driving rod.
[0009]
In this state, the stud pin is pushed by the driving rod and is driven from the front opening of the cylindrical main body with the pin root portion pointing forward. Thus, the stud pin can be accurately driven into the installation hole formed in the tread surface of the tire. Since the operation of 10 correcting misalignment of the stud pin and the driving rod and the operation of driving the stud pin again can be omitted, the driving operation can be efficiently carried out.
[0010]
The method of manufacturing a studded tire according to the present invention enables manufacturing of a high quality studded tire including stud pins accurately driven in accordance to predetermined settings with high productivity.
Brief Description of Drawings [0011]
FIG. 1 is an explanatory diagram in a front view illustrating a driving device for a stud pin according to an embodiment of the present invention disposed below a pneumatic tire.
FIG. 2 is an explanatory diagram in a longitudinal cross-sectional view 25 illustrating the internal structure of a main portion of the driving device in FIG.
1.
FIG. 3 is an explanatory diagram in a plan view illustrating the driving device in FIG. 2.
FIG. 4 is an explanatory diagram in a longitudinal cross-sectional view 30 illustrating a state in which a stud pin is stored in a cylindrical main body in FIG. 2.
FIG. 5 is an explanatory diagram in a longitudinal cross-sectional view illustrating a state in which the tips of support claws are inserted inside the installation hole.
FIG. 6 is an explanatory diagram in a longitudinal cross-sectional view illustrating a state in which the stud pin in FIG. 5 is driven into an installation hole.
20195313 prh 17-04-2019
FIG. 7 is an explanatory diagram in a cross-sectional view illustrating the tread surface of a manufactured studded tire and the vicinity.
Description of Embodiments [0012]
A driving device for a stud pin and a method of manufacturing a studded tire according to embodiments of the present invention will be described below with reference to the drawings.
[0013]
FIGS. 1 to 3 illustrate a driving device 1 for a stud pin according to an embodiment of the present invention disposed below a pneumatic tire 11. Typically, each stud pin 10 includes a pin top portion 10a and a pin root portion 10b. A core portion 10c projects upward from the upper surface of the pin top portion 10a, and the pin root portion 10b has a narrow portion connected to the lower surface of the pin top portion 10a and a flange portion connected to the lower surface of the narrow portion. The driving device 1 drives the stud pin 10 with the pin root portion 10b pointing forward. The driven stud pin 10 is driven into an installation hole 13 formed in a tread surface 12 of the pneumatic tire 11.
[0014]
The driving device 1 includes a cylindrical main body 2 that extends in the vertical direction and includes a front opening 2a at the upper end of the cylindrical main body 2, a driving rod 4 extending in the cylinder axial direction inside the cylindrical main body 2, and a cylindrical inlet portion 3 extending diagonally upward from the side surface of the cylindrical main body 2.
[0015]
Since the stud pin 10 is stored in the cylindrical main body 2, the minimum inner diameter of the cylindrical main body 2 is larger than the maximum outer diameter of the stud pin 10. A drive unit 6 that moves the driving rod 4 is installed at the lower end portion of the cylindrical main body 2. The lower end of the drive unit 6 is, for example, fixed to a box-shaped base portion 8. The base portion 8 is movable to a predetermined position in the front, rear, left and right directions. In this embodiment, the cylindrical main body 2 is vertically movable on the base portion 8.
[0016]
Furthermore, in this embodiment, a plurality of support claws 7 projecting upward from the cylindrical main body 2. The number of support
20195313 prh 17-04-2019 catches 7 is appropriately determined. However, three or four support claws 7 are preferably disposed in the circumferential direction at equal intervals. The lower end portion of each support claw 7 is supported in an axially rotatably manner, and the upper end portion is designed such that it is movable in the radial direction of the cylindrical main body 2. The design of the support claw 7 is not limited to that exemplified by this embodiment. Alternatively, various designs can be used. Note that the support claws 7 can be discretionarily provided.
[0017]
The driving rod 4 moves in the cylinder axial direction (i.e., the vertical direction) along the cylindrical main body 2 via a driving force from the drive unit 6. For example, the drive unit 6 such as a hydraulic cylinder, vertically moves the driving rod 4. A holding portion 5 is formed at the tip of the driving rod 4. The holding portion 5 is configured to hold the pin top portion 10a of the stud pin 10 in a fitted state while the pin root portion 10b projects upward. In this embodiment, a cylindrical hole is used as the holding portion 5.
[0018]
The fitted state is a state in which the holding portion 5 holds the pin top portion 10a such that the pin top portion 10a is not readily displaced and the 20 pin top portion 10a can be readily pulled out from the holding portion 5. For example, the gap between the outer side surface of the pin top portion 10a of the stud pin 10 held by the holding portion 5 in the fitted state and the opposing inner side surface of the holding portion 5 is approximately from 0.1 mm to 1 mm. However, the gap is not limited to approximately from 0.1 mm to 1 mm, 25 and so long as the above-described fitted state is maintained, a holding portion besides the cylindrical hole can be used.
[0019]
The minimum inner diameter of the inlet portion 3 into which the stud pin 10 is loaded is set to a value larger than the maximum outer diameter of the 30 stud pin 10. The internal space of the inlet portion 3 is in communication with the internal space of the cylindrical main body 2. The inclination angle A of the inlet portion 3 relative to the cylinder axial direction of the cylindrical main body 2 is, for example, from 15° to 45°.
[0020]
The inlet portion 3 may be fixed to the cylindrical main body 2 in an immobile state or may be movably attached to the cylindrical main body 2. For example, the lower end portion of the inlet portion 3 may be axially supported on the side surface of the cylindrical main body 2 such that the inlet portion 3
20195313 prh 17-04-2019 is pivotable in the vertical direction about the lower end portion. With such a configuration, the inlet portion 3 is preferably pivotable within a range in which the inlet portion 3 extends diagonally upward relative to the cylindrical main body 2.
[0021]
The steps of a method of manufacturing a studded tire according to the present invention will now be described.
[0022]
The driving device 1 is disposed below the pneumatic tire 11 held on a tire holder 9 in a vertical state. Many installation holes 13 are formed at predetermined positions on the tread surface 12 of the pneumatic tire 11. [0023]
As illustrated in FIG. 2, the stud pin 10 is loaded into the inlet portion 3 with the pin top portion 10a pointing downward. The stud pin 10 moves downward toward the cylindrical main body 2 through the inlet portion 3 due to its own weight and is stored in the cylindrical main body 2. The holding portion 5 is on standby in the cylindrical main body 2 at a position lower than the connecting portion of the inlet portion 3.
[0024]
As illustrated in FIG. 4, the stud pin 10 stored in the cylindrical main body 2 is disposed such that the pin top portion 10a is at the downside and the pin root portion 10b is at the upper side. The pin top portion 10a is held by the holding portion 5 in the fitted state, and the pin root portion 10b projects upward from the holding portion 5. Since the pin top portion 10a is held by the holding portion 5 in the fitted state, the misalignment of the stud pin 10 and the driving rod 4 (the misalignment of the center axes) can be prevented.
[0025]
For example, a range of 20% or greater of the entire length of the stud pin 10 is held by the holding portion 5 in the fitted state. To more reliably suppress misalignment of the stud pin 10 and the driving rod 4, a range of 50% or greater of the entire length of the stud pin 10 is preferably held by the holding portion 5 in the fitted state.
[0026]
Subsequently, the front opening 2a is moved close to the tread surface
12 and positioned in a state facing a predetermined installation hole 13 . In this embodiment, as illustrated in FIG. 5, the tips of the support claws 7 are inserted inside the installation hole 13 to position the front opening 2a in a state facing the predetermined installation hole 13.
20195313 prh 17-04-2019 [0027]
Subsequently, as illustrated in FIG. 6, the driving rod 4 is moved upward, and the stud pin 10 stored in the cylindrical main body 2 is driven toward the installation hole 13. The stud pin 10 is driven from the front opening 2a with the pin root portion 10b pointing forward (upward) and buried into the installation hole 13 from the pin root portion 10b.
[0028]
Here, the launched stud pin 10 passes through the inner sides of the support claws 7 and causes the upper end portions of the support claws 7 to move outward. This causes the installation hole 13 to slightly expanded in diameter, and the pin root portion 10b can be buried into the installation hole 13 in this state. Thus, in this embodiment, the pin root portion 10b is advantageous for smoothly burying the pin root portion 10b into the installation hole 13.
[0029]
Subsequently, the driving rod 4 is moved downward to move the driving device 1 away from the tread surface 12, and then the driving of the stud pin 10 ends. Stud pins 10 are driven into corresponding installation holes 13 in sequence through the same process. In this way, as illustrated in FIG. 7, a studded tire T is manufactured which includes the driven stud pin 10, which is buried into the installation hole 13 from the pin root portion 10b such that the pin top portion 10a is exposed at the tread surface 12 and the core portion 10c projects outward from the tread surface 12.
[0030]
As described above, in the driving device 1 according to the present invention, the pin top portion 10a is held by the holding portion 5 in the fitted state, thus preventing misalignment of the stud pin 10 and the driving rod 4. Hence, an operation of correcting the misalignment of the stud pin 10 and the driving rod 4 is unnecessary.
[0031]
Since the stud pin 10 is launched without misalignment of the stud pin and the driving rod 4, the stud pin 10 can be accurately driven into the installation hole 13. Thus, defects such as diagonal driving of the stud pin 10 into the installation hole 13 can be reduced, and the stud pin 10 does not have 35 to be driven again.
[0032]
Not only is such an additional operation unnecessary but also the stud pin 10 can be automatically stored in the cylindrical main body 2 by its own
20195313 prh 17-04-2019 weight by simply loading the stud pin 10 to the inlet portion 3. The joint effect of such factors enables an efficient driving operation. That is, the present invention achieves significantly advantageous effects by employing a configuration in which the cylindrical main body 2 vertically extends and the stud pin 10 is driven upward from a lower side.
[0033]
Hence, the method of manufacturing a studded tire according to the present invention enables manufacturing of a high quality studded tire T including stud pins 10 accurately driven in accordance to predetermined settings.
Reference Signs List [0034]
I Driving device
2 Cylindrical main body
2a Front opening
Inlet portion
Driving rod
Holding portion
6 Drive unit
Support claw
Base portion
Tire holder
Stud pin
10a Pin top portion
10b Pin root portion
10c Core portion
II Pneumatic tire
Tread surface
13 Installation hole
T Studded tire
权利要求:
Claims (4)
[1] Claims
1. A driving device for a stud pin, comprising:
a cylindrical main body in which a stud pin is stored; and a driving rod extending in a cylinder axial direction inside the cylindrical main body and moving in the cylinder axial direction, wherein the stud pin stored in the cylindrical main body is driven by being pushed by the driving rod from a front opening of the cylindrical main body with a pin root portion of the stud pin pointing forward, the cylindrical main body vertically extends with the front opening located at an upper end, the cylindrical main body comprising a cylindrical inlet portion extending diagonally upward from a side surface of the cylindrical main body, and a holding portion formed at a tip of the driving rod, and by loading the stud pin in the inlet portion with a pin top portion pointing downward, the stud pin is stored in the cylindrical main body, the pin top portion is held by the holding portion in a fitted state, and the pin root portion projects upward from the holding portion.
[2] 2. The driving device for a stud pin according to claim 1, wherein a range of 50% or greater of an entire length of the stud pin is held by the holding portion in the fitted state.
[3] 3. The driving device for a stud pin according to claim 1 or 2, further comprising:
a plurality of support claws projecting above the cylindrical main body, wherein the stud pin driven from the front opening passes inner sides of the plurality of support claws and upper end portions of the plurality of support claws move outward.
[4] 4. A method of manufacturing a studded tire using the driving device for a stud pin according to any one of claims 1 to 3, the method comprising:
positioning the front opening in a state facing an installation hole formed in a tread surface of a tire;
driving the stud pin stored in the cylindrical main body toward the installation hole; and burying the stud pin from the pin root portion.
类似技术:
公开号 | 公开日 | 专利标题
KR102060867B1|2019-12-30|O-ring mounting device and method
US9925632B2|2018-03-27|Alignment device for assembling components and method of use
US9821424B2|2017-11-21|Manufacturing fixture
WO2015075958A1|2015-05-28|Valve cotter mounting device and engine manufacturing method
FI20195313A1|2019-04-17|Driving device for stud pin and method of manufacturing studded tire
WO2019100935A1|2019-05-31|Localization mechanism and battery-swapping mechanism
JP5316247B2|2013-10-16|Clamp holding device
CN103706998B|2016-10-05|A kind of repeatable precision positioning method
CN109202344A|2019-01-15|A kind of semiclosed tube rod class formation welding fixture and its assembly method
WO2019077803A1|2019-04-25|Component positioning tool and component positioning device using same
JP6353378B2|2018-07-04|Tire gripping device and tire inspection device
JP2010099839A|2010-05-06|Tire vulcanizing apparatus and method for manufacturing vulcanized tire
JP6329914B2|2018-05-23|Tire gripping device control method, tire inspection method, and program
JP2017013201A|2017-01-19|Positioning device and positioning method
KR101576817B1|2015-12-14|Bead set distance holder apparatus for green tire building
CN205363166U|2016-07-06|UHP light beam lamp assembly machine
KR101781313B1|2017-10-10|Tire vulcanizer system and assembly method therefor
CN104690664A|2015-06-10|Test fixture assembling and disassembling mechanism
KR20110009325A|2011-01-28|The device for combining a vehicle with a special equipment loaded on the vehicle and separating a vehicle from a special equipment loaded on the vehicle
US10668680B2|2020-06-02|Device and method for manufacturing cylindrical member
JP2016078313A|2016-05-16|Bead-separator suspending and holding method and device
JP5705762B2|2015-04-22|Tire vulcanizer and tire vulcanizer
KR102020711B1|2019-09-11|Wheel replacement device of tire uniformity testing machine
KR20150062469A|2015-06-08|An Apparatus for Decreasing Driving Force of Trench Mortar
FR3099407B1|2021-07-02|EXPANDABLE DRUM FOR CONFORMING PNEUMATIC BANDAGES INCLUDING A PARALLELOGRAM EXTENSION DEVICE FOR HOLDING THE ROD
同族专利:
公开号 | 公开日
WO2018070378A1|2018-04-19|
RU2703397C1|2019-10-16|
FI128293B|2020-02-28|
JP6500871B2|2019-04-17|
JP2018062307A|2018-04-19|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题

JPS4023401B1|1963-12-28|1965-10-15|
US3348291A|1965-07-26|1967-10-24|Ingersoll Rand Co|Fluid operated stud driver tool|
US3367015A|1965-10-22|1968-02-06|Studebaker Corp|Stud feeding mechanism|
SE323938B|1966-04-01|1970-05-11|Dahlberg Ab F|
US3507031A|1967-12-08|1970-04-21|Black & Decker Mfg Co|Stud gun|
JPH0679646A|1992-09-04|1994-03-22|Maruemu Sangyo:Kk|Spike gun|
JP4023401B2|2003-06-27|2007-12-19|日産自動車株式会社|Counterpart position display device|
US20160311267A1|2013-12-09|2016-10-27|The Yokohama Rubber Co., Ltd.|Pneumatic Tire|
法律状态:
2020-02-28| FG| Patent granted|Ref document number: 128293 Country of ref document: FI Kind code of ref document: B |
2021-05-27| MM| Patent lapsed|
优先权:
申请号 | 申请日 | 专利标题
JP2016202556A|JP6500871B2|2016-10-14|2016-10-14|Stud pin driving device and method of manufacturing stud tire|
PCT/JP2017/036670|WO2018070378A1|2016-10-14|2017-10-10|Stud pin driving device and method for manufacturing stud tire|
[返回顶部]